$\hat \gamma_0=\begin{bmatrix} I_2 & 0 \\ 0 & -I_2 \end{bmatrix}, \quad \hat \gamma_k= \begin{bmatrix} 0 & -\sigma_k \\ \sigma_k & 0 \end{bmatrix}, \quad \hat \gamma_5 = \begin{bmatrix} 0 & I_2 \\ I_2 & 0 \end{bmatrix}$ Then we have $\hat \gamma_0 \hat \gamma_1 \hat \gamma_2 \hat \gamma_3 = \begin{bmatrix}0& iI_2 \\ iI_2 & 0\end{bmatrix} = i \gamma_5$