Let $R = \beta^{1/2} \text{exp}(\vec E/2)$ where $\beta \in \mathbb R$ and $\vec E$ is a timelike bivector, $\hat \rho = P + \vec S$, and $R^\dagger R = \beta (L_0 + \vec L)$. Take $\vec L (\vec S_\parallel + \vec S_\perp) = (\vec S_\parallel - \vec S_\perp) \vec L$. Then $ \begin{aligned} R \hat \rho R^\dagger &= \beta (PL_0 + P \vec L + \vec S_\parallel L_0 + \vec S_\parallel \cdot \vec L + \vec S_\perp) \end{aligned} $ and $ \begin{aligned} \frac{1}{2}\big\{R^\dagger R, \hat \rho\big\} &= \beta \big( P L_0 + P \vec L + \vec S L_0 + \vec S \cdot \vec L \big) \\ &= \big(R \hat \rho R^\dagger - \beta \vec S_\perp\big) + \beta \vec S_\perp L_0 \\ &= R\hat \rho R^\dagger + \beta (L_0 -1) \vec S_\perp \end{aligned} $ which imply $ \begin{aligned} R \hat \rho R^\dagger - \frac{1}{2}\big\{R^\dagger R, \hat \rho\big\} &= \beta (1-L_0) \vec S_\perp. \end{aligned} $ Note that $R \hat \rho R^\dagger - \langle R\hat \rho R^\dagger\rangle = \langle R \hat \rho R^\dagger\rangle_2 = (R\rho \widetilde R)\wedge \gamma_0= \beta(P \vec L + \vec S_\parallel L_0 + \vec S_\perp)$ carries significantly more boost information than the Lindblad term, and is also trace-free. *Why does the Lindblad throw away so much of the boost?*