In both the Weyl and Dirac basis, the Dirac matrices satisfy $ \hat \gamma_k \hat \gamma_0 = \hat \gamma_5 \hat\sigma_k $ where $\hat \sigma_k = \begin{bmatrix}\sigma_k & 0 \\ 0 & \sigma_k \end{bmatrix}$, whereas in the Hestenes spacetime split, we define $ \sigma_k \equiv \gamma_k \gamma_0. $ This may lead to confusion. ## Dirac basis ![[Dirac Basis]] $\hat \gamma_k \hat \gamma_0 = \begin{bmatrix} 0 & -\sigma_k \\ \sigma_k & 0 \end{bmatrix} \begin{bmatrix} I_2 & 0 \\ 0 & -I_2 \end{bmatrix} = \begin{bmatrix} 0 & \sigma_k \\ \sigma_k & 0\end{bmatrix} = \hat \gamma_5 \hat \sigma_k$ ## Weyl basis ![[Weyl Basis]] $\hat \gamma_k \hat \gamma_0 = \begin{bmatrix} 0 & -\sigma_k \\ \sigma_k & 0 \end{bmatrix} \begin{bmatrix} 0 & I_2 \\ I_2 & 0 \end{bmatrix} = \begin{bmatrix} -\sigma_k & 0 \\ 0 & \sigma_k \end{bmatrix} = \hat \gamma_5\hat\sigma_k$